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Summary

— Verifiable electronic voting promises to ensure:

• the correctness of elections even in the presence of a corrupt
authority,

• and provide strong privacy guarantees.

No ongoing privacy

However, few practical systems with end-to-end verifiability are
expected to offer long term privacy, let alone guarantee it.
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Summary

— Most current constructions for everlasting privacy use perfectly
hiding commitment schemes and public key encryption;

— this is made verifiable by use of Zero Knowledge Proofs (ZKPs)
for correct encryption and correct shuffling of ballots.
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Summary

— Various currently proposed solutions rely on unusual
constructions whose security has not been established.

— The cost of verifying the zero knowledge proofs of other
solutions has only been partially analysed.

— Our work builds upon Moran and Naor’s solution—and its
extensions, applications and generalisations—to present a
scheme which is additively homomorphic, efficient to verify, and
rests upon well studied assumptions.
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Introduction

— At present future breakthroughs in computation power,
mathematics, or large-scale quantum computers will put the
voters’ privacy at risk.

— There are schemes which provide information theoretic maximal
privacy but these are impractical for most real elections.

— Much of the everlasting privacy literature relies on and builds
upon Moran and Naor’s work [MN10], which was modified as an
extension to the web-based voting Helios scheme [DVDGA12].

— Moran and Naor’s scheme and many others, including ours, have
at least one (sometimes threshold of) authorities against which
privacy holds only computationally.

5



Introduction

— At present future breakthroughs in computation power,
mathematics, or large-scale quantum computers will put the
voters’ privacy at risk.

— There are schemes which provide information theoretic maximal
privacy but these are impractical for most real elections.

— Much of the everlasting privacy literature relies on and builds
upon Moran and Naor’s work [MN10], which was modified as an
extension to the web-based voting Helios scheme [DVDGA12].

— Moran and Naor’s scheme and many others, including ours, have
at least one (sometimes threshold of) authorities against which
privacy holds only computationally.

5



Introduction

— At present future breakthroughs in computation power,
mathematics, or large-scale quantum computers will put the
voters’ privacy at risk.

— There are schemes which provide information theoretic maximal
privacy but these are impractical for most real elections.

— Much of the everlasting privacy literature relies on and builds
upon Moran and Naor’s work [MN10], which was modified as an
extension to the web-based voting Helios scheme [DVDGA12].

— Moran and Naor’s scheme and many others, including ours, have
at least one (sometimes threshold of) authorities against which
privacy holds only computationally.

5



Introduction

— At present future breakthroughs in computation power,
mathematics, or large-scale quantum computers will put the
voters’ privacy at risk.

— There are schemes which provide information theoretic maximal
privacy but these are impractical for most real elections.

— Much of the everlasting privacy literature relies on and builds
upon Moran and Naor’s work [MN10], which was modified as an
extension to the web-based voting Helios scheme [DVDGA12].

— Moran and Naor’s scheme and many others, including ours, have
at least one (sometimes threshold of) authorities against which
privacy holds only computationally.

5



Primitives

Pedersen commitments: The modified Pedersen commitment
scheme Π is the triple of PPT algorithms (Π.Setup,Π.Com,Π.Open):
— CK ← Π.Setup(G) s.t. CK = {G,g,h}. Given a group G of

semi-prime order n, let g be any generator of G and choose
h←r G (with overwhelming probability h will be a generator).

— A given Commit Key CK = {G,g,h} defines the message space
MCK = Zn, randomness space RCK = Zn, commitment space
CCK = Gn, and opening space DCK = (Zn,Zn). The Π.ComCK
algorithm takes m ∈ Zn, r ∈ Zn and sets c = gr hm and
d = (m, r).

— The Π.OpenCK algorithm takes a commitment c ∈ Gn and
opening d ∈ (m ∈ Zn, r ∈ Zn). If c = gr hm return m else return
⊥.
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Primitives

Moran-Naor (MN) encryption:
— Σ.KeyGen ouputs PK = (n) and SK = (d), where n = pq is a

RSA modulus and d is the lowest common multiple of p − 1 and
q − 1. Choose k s.t. kn + 1 is prime, and let g,h be random
generators of subgroup of order n in Z∗

kn+1, denoted Gn.
— Let Σ.EncPK (m ∈ Zn, (r ∈ Zn, r ′ ∈ Z∗

n, r ′′ ∈ Z∗
n)) produce

CT = (c, ct1, ct2) = (gr hm mod kn + 1, (1 + n)mr ′n mod
n2, (1 + n)r r ′′n mod n2).

— Σ.DecSK (CT = (c, ct1, ct2)) be the decryption function. First use
the Paillier decryption function to retrieve m, r from ct1, ct2
respectively, then if c = gr hm the result is m else ⊥.
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Moran and Naor’s scheme (Incredible roughly)

Scheme:
— The voter submits unconditional hiding commitments to the

bulletin board
— The voter, also, submits encrypted openings of these

commitments to the authorities
— The authorities verifiable shuffle the unconditional hiding

commitments and the openings.
Security:
— Integrity: Verifiability of the shuffle and binding property of the

commitments
— Everlasting Privacy: All the information on the bulletin board in

perfectly/statistically hiding
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Moran and Naor’s scheme (Incredible roughly)

Figure: Mixing with three authorities
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Moran and Naor’s scheme (Incredible roughly)

Moran and Naor said “although more efficient (zero knowledge)
protocols exist for these applications, for the purpose of this paper we
concentrate on simplicity and ease of understanding" [MN10].

Problem
In the decade since the follow up work has continued to rely on
cut-and-choose [BDvdG13, DVDGA12].
Our contribution finally closes this gap by providing efficient proofs for
encryption, re-encryption and shuffling.
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Related work

— Arapinis et al. [ACKR13] recently showed in ProVerif that various
constructions achieve everlasting privacy,

• some of these solutions lose verifiability properties in exchange
for everlasting privacy.

— Cuvelier et al. [CPP13] systematised much of the research by
showing how certain types of primitives can be securely
combined.
• They also present an elegant scheme called PPATC based on

Abe et al.’s [AHO12] commitment scheme on bilinear pairings,
which they show has efficient encryption on the order of 40 times
faster then existing methods.

— However, Cuvelier et al. [CPP13] do not account for the
verification complexity.
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Our contribution

— We present the Sigma Protocol for re-encryption of the MN
cryptosystem; we also provide the proof for this Sigma Protocol
and for the protocol for correct encryption [CPP13] of the MN
cryptosystem;

— We provide the first proof of security for the existing modified
Pedersen commitment of semi-prime order;

— We present an efficient variant of ballot mixing;
— We show that Moran-Naor suggestion of Paillier encryption and

Pedersen commitments—refereed as PPATP in [CPP13]—is at
least as fast to verify as PPATC when using the Sigma Protocol
and mix-net we will detail later.

— Further, the MN system supports homomorphic tallying where
PPATC does not which is a significant advantage in some
situations.
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Sigma protocols

The Sigma Protocol for correct encryption was proposed by Cuvelier
et al. [CPP13], though they omit the proof. Such a protocol is used to
prove that two ciphertexts encrypt the opening to a commitment.

We give a Sigma Protocol for correct re-encryption.
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Pedersen commitment of semi-prime order

Let Gn be the direct product of Gp and Gq

Let g = gp × gq h = hp × hq

Adversary
(Gn,g,h)

(c,(m1, r1), (m2, r2))

if GCD(m1 −m2,n) = 1 or GCD(r1 − r2,n) = 1 then WLOG
return γ = (r2 − r1)/(m1 −m2) mod p, δ = (r2 − r1)/(m1 −m2) mod q,
if WLOG GCD(m1 −m2,n) = p return δ = (r2 − r1)/(m1 −m2)

Challenger

Gp,gp,hp,Gq,gq,hq

γ and/or δ

Figure: Reduction from binding to discrete log
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More efficient mixing

Algorithm 1: Proof of Shuffle on Private Board
Common Input: Commitment parameters g, h, h1, ..., hN ∈ Gn , two ciphertexts e = (e1, ..., eN ) ∈ CPK and

e′ = (e′1, ..., e′n) ∈ CPK , and a permutation matrix commitment c = (c1, ..., cN ).

Private Input : Permutation matrix M = (mi,j ) ∈ ZN×N
n , randomness r = (r1, ..., rN ) ∈ ZN

n s.t. cj = grj ∏N
i=1 h

mj,i
i , and

randomness r′ = (r ′1, ..., r ′N ) ∈ Rpk s.t. e′i = ϕPK (eπ(i), r ′π(i)), for i, j ∈ [1, N].

1 V chooses u = (u1, ..., uN ) ∈ ZN
n randomly and hands u to P .

2 P defines u′ = (u′
1, ..., u′

N ) = Mu and then chooses r̂ = (r̂1, ..., r̂N ), ŵ = (ŵ1, ..., ŵN ), w′ = (w′
1, ..., w′

N ) ∈ ZN
n , and

w1, w2, w3,∈ Zn and w4 ∈ RPK . P defines r̄ = ⟨1̄, r⟩, r̃ = ⟨r, u⟩, r̂ =
∑N

i=1 r̂i
∏N

j=i+1 u′
j and

r ′ = (
∑N

i=1 r ′i,0ui ,
∏N

i=1 r
′ui
i,1 ,

∏N
i=1 r

′ui
i,2 ). P hands to V , where we set ĉ0 = h and i ∈ [1, N],

ĉi = g r̂i ĉ
u′i
i−1 t1 = gw1 t2 = gw2 t3 = gw3

∏N
i=1 h

w′
i

i

t4 = Σ.EncPK (0, w4)
∏N

i=1 e
′w′

i
i t̂i = gŵi ĉ

w′
i

i−1

3 V chooses a challenge ξ ∈ Zn at random and sends it to P .
4 P then responds with:

s1 = w1 + ξ · r̄ s2 = w2 + ξ · r̂ s3 = w3 + ξ · r̃ s4 = w4 − ξ · r ′

ŝi = ŵi + ξ · r̂i s′i = w′
i + ξ · u′

i

5 V accepts if and only if, for i ∈ [1, N],

t1 = (
∏N

i=1 ci/
∏N

i=1 hi )
−ξgs1 t2 = (ĉN/h

∏N
i=1 ui )−ξgs2 t3 = (

∏N
i=1 c

ui
i )−ξgs3

∏N
i=1 h

s′i
i

t4 = (
∏N

i=1(ei )
ui )−ξΣ.EncPK (0, s4)

∏N
i=1(e

′
i )

s′i t̂i = ĉ−ξ
i gŝi ĉ

s′i
i−1
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Efficiency Encryption

Scheme MN [MN10] PPATC [CPP13]
ExpZ∗

kn+1
3.375 0

ExpZ∗
n2

4 0
MultG1 0 9
MultG2 0 4

Total cost 1,024,896 multiplications 114,432 multiplications

Table: Total number of operations executed for encryption - Total cost is
obtained according to the implementation setting.
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Efficiency Verification

Scheme MN [MN10] PPATC [CPP13]
ExpZ∗

kn+1
1.125 0

ExpZ∗
n2

0 0
MultG1 0 1
MultG2 0 0
Pairing 0 3

Total cost 79,488 multiplications 119,040 multiplications

Table: Total number of operations executed for opening verification - Total
cost is obtained according to the implementation setting.
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Conclusion

— Both verifiability and ongoing privacy are important.

— There is currently a lack of well fleshed out solutions we provide
verifiability, practicality, and ongoing privacy.

— Various currently proposed solutions with everlasting privacy rely
on unusual constructions.

— In the decade since Moran and Naor presented their seminal
work many of the gaps have been left open.

— We close the gaps in the security proofs and zero knowledge
proofs for schemes in the style of Moran-Naor.
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Questions?
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