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No ongoing privacy

However, few practical systems with end-to-end verifiability are
expected to offer long term privacy, let alone guarantee it.
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— this is made verifiable by use of Zero Knowledge Proofs (ZKPs)
for correct encryption and correct shuffling of ballots.
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— Various currently proposed solutions rely on unusual
constructions whose security has not been established.

— The cost of verifying the zero knowledge proofs of other
solutions has only been partially analysed.

— Our work builds upon Moran and Naor’s solution—and its
extensions, applications and generalisations—to present a
scheme which is additively homomorphic, efficient to verify, and
rests upon well studied assumptions.
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— At present future breakthroughs in computation power,
mathematics, or large-scale quantum computers will put the
voters’ privacy at risk.

— There are schemes which provide information theoretic maximal
privacy but these are impractical for most real elections.

— Much of the everlasting privacy literature relies on and builds
upon Moran and Naor’s work [MN10], which was modified as an
extension to the web-based voting Helios scheme [DVDGA12].

— Moran and Naor’s scheme and many others, including ours, have
at least one (sometimes threshold of) authorities against which
privacy holds only computationally.



Primitives
o (

Pedersen commitments: The modified Pedersen commitment
scheme I is the triple of PPT algorithms (IN.Setup, N.Com, N.Open):

— CK « N.Setup(G) s.t. CK = {G, g, h}. Given a group G of
semi-prime order n, let g be any generator of G and choose
h <, G (with overwhelming probability h will be a generator).

— A given Commit Key CK = {G, g, h} defines the message space
Mk = Zn, randomness space Rcx = Zn, cOmmitment space
Cck = Gp, and opening space Dgx = (Zn, Zn). The N.Comegk
algorithm takes m € Z,, r € Z, and sets ¢ = g"h"™ and
d=(m,r).

— The MN.Openg algorithm takes a commitment ¢ € G, and
opening d € (m € Zn, r € Zp). If c = g"h™ return m else return
1.



Primitives
o (

Moran-Naor (MN) encryption:

— X.KeyGen ouputs PK = (n) and SK = (d), where n=pqgis a
RSA modulus and d is the lowest common multiple of p — 1 and
g — 1. Choose k s.t. kn+ 1 is prime, and let g, h be random
generators of subgroup of order nin Zy,  ,, denoted Gp,.

— Let X.Encpx(m € Zp,(r € Zn,r' € Z},, 1" € Z3)) produce
CT = (c,cty,cty) = (9"h™ mod kn+ 1, (1 + n)"r'"" mod
2, (14 n)r'"" mod n?).

— Y.Decgk(CT = (c, ctq, ctp)) be the decryption function. First use
the Paillier decryption function to retrieve m, r from cty, ctp
respectively, then if ¢ = g"h™ the result is melse L.



Moran and Naor’s scheme (Incredible roughly)

Scheme:

— The voter submits unconditional hiding commitments to the
bulletin board

— The voter, also, submits encrypted openings of these
commitments to the authorities

— The authorities verifiable shuffle the unconditional hiding
commitments and the openings.

Security:
— Integrity: Verifiability of the shuffle and binding property of the
commitments
— Everlasting Privacy: All the information on the bulletin board in
perfectly/statistically hiding



Moran and Naor’s scheme (Incredible roughly)

e encrypted votes (MN/Moran-Naor)
c commitments to votes (Pedersen)
v plaintext votes and openings
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Figure: Mixing with three authorities




Moran and Naor’s scheme (Incredible roughly) ® ‘

Moran and Naor said “although more efficient (zero knowledge)
protocols exist for these applications, for the purpose of this paper we
concentrate on simplicity and ease of understanding” [MN10].

Problem

In the decade since the follow up work has continued to rely on
cut-and-choose [BDvdG13, DVDGA12].

Our contribution finally closes this gap by providing efficient proofs for
encryption, re-encryption and shuffling.
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— Arapinis et al. [ACKR13] recently showed in ProVerif that various
constructions achieve everlasting privacy,

e some of these solutions lose verifiability properties in exchange
for everlasting privacy.

— Cuvelier et al. [CPP13] systematised much of the research by
showing how certain types of primitives can be securely
combined.

e They also present an elegant scheme called PPATC based on
Abe et al’s [AHO12] commitment scheme on bilinear pairings,
which they show has efficient encryption on the order of 40 times
faster then existing methods.

— However, Cuvelier et al. [CPP13] do not account for the
verification complexity.
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Our contribution

— We present the Sigma Protocol for re-encryption of the MN
cryptosystem; we also provide the proof for this Sigma Protocol
and for the protocol for correct encryption [CPP13] of the MN
cryptosystem;

— We provide the first proof of security for the existing modified
Pedersen commitment of semi-prime order;

— We present an efficient variant of ballot mixing;

— We show that Moran-Naor suggestion of Paillier encryption and
Pedersen commitments—refereed as PPATP in [CPP13]—is at
least as fast to verify as PPATC when using the Sigma Protocol
and mix-net we will detail later.

— Further, the MN system supports homomorphic tallying where
PPATC does not which is a significant advantage in some
situations.
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Sigma protocols
X

The Sigma Protocol for correct encryption was proposed by Cuvelier
et al. [CPP13], though they omit the proof. Such a protocol is used to
prove that two ciphertexts encrypt the opening to a commitment.

We give a Sigma Protocol for correct re-encryption.
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Pedersen commitment of semi-prime order ® ‘

Gp; gps hp; Gg, 99, g

Challenger|

(Gn, g, h)

Adversary
(c,(m1, ry), (Mg, 12)

Let G, be the direct product of G, and G4
Letg=gpxgqgh=hy,x hyq

if GCD(my — mp,n) =1 or GCD(ry — r2, n) = 1 then WLOG
return y = (2 — ri)/(my — mz) mod p, 6 = (rz — r1)/(my — mz) mod q,
if WLOG GCD(my — mp, n) = preturnd = (r, — ry)/(my — my)

!

~ and/or ¢

Figure: Reduction from binding to discrete log
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More efficient mixing

Algorithm 1: Proof of Shuffle on Private Board

Common Input: Commltment parameters g, h, hy, ..., hy € Gp, two ciphertexts e = (eq, ..., ey) € Cpk and
e =(ef,...,e)) € Cpx, and a permutatlon matrix commitment ¢ = (cq, ..., cy).
. m; ;
Private Input : Permutation matrix M = (m; ;) € ZNXN randomness r = (ry, ..., Iy) € ZN st.¢ = g'/ ]‘[f; h; 7, and
randomness 1’ = (r{, ..., ry) € Rpk St € = dpk(ex (), w(l)) fori,j € [1, N].
V chooses u = (uy, ..., uy) € ZN randomly and hands u to P.
P defines u’ = (uf, ..., uy) = Mu and then chooses ¥ = (7, ..., ), W = (Wy, ..., Wy), W' = (W], ..., w}) € Z, and
w1,w2,W3,€ Zn and wy e RpK- Pdefines?: A0, F=(ruy,t=N, r,H] 144 uf and

(Z, 1 ,Ou,,l'[, 1 1,1'[, y 12 ). P hands to V, where we set & = handi € [1, N],

!
t = g" t =g"2 s =g"s [T, hll'”i
! !
ty = T-Encpr (0, wg) T €, b= g"iel,
V chooses a challenge £ € Z, at random and sends it to P.
‘P then responds with:
Sy =wy +E-F Sp=wp + £ F s3=wg+£&-F sg=wg— €1
S=w,+&- % si=w +&-yf

G=die,

V accepts if and only if, for i € [1, N],

; N oy i
t = (ITY4 o/ TIN hy) =4 g™ tp = (&n/H =1 “') €92 t3 = ([T, ) ~¢g%s [T, h
/ ~ ~—
ty = (T4 (6)%) 4 T.Encex (0, s4) TTY.4 ()% h=¢"%
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Efficiency Encryption

o
Scheme MN [MN10] PPATC [CPP13]
EXpZ;:nH 3.375 0
Epo;2 4 0
/\/IU/I‘([;,1 0 9
/\/IU/I‘(G,2 0 4
Total cost | 1,024,896 multiplications | 114,432 multiplications

Table: Total number of operations executed for encryption - Total cost is
obtained according to the implementation setting.
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Efficiency Verification

o

Scheme MN [MN10] PPATC [CPP13]
EXPZ;H+1 1.125 0

EX,DZ:2 0 0

Multg, 0 1

/\/’U/l‘((;,2 0 0

Pairing 0 3
Total cost | 79,488 multiplications | 119,040 multiplications

Table: Total number of operations executed for opening verification - Total
cost is obtained according to the implementation setting.
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Conclusion

— Both verifiability and ongoing privacy are important.

— There is currently a lack of well fleshed out solutions we provide
verifiability, practicality, and ongoing privacy.

— Various currently proposed solutions with everlasting privacy rely
on unusual constructions.

— In the decade since Moran and Naor presented their seminal
work many of the gaps have been left open.

— We close the gaps in the security proofs and zero knowledge
proofs for schemes in the style of Moran-Naor.
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Questions?
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