

On practical aspects of coercion-resistant remote voting systems

Kristjan Krips^{1,3}, Jan Willemson^{1,2}

¹Cybernetica ²STACC ³University of Tartu

October 4th, 2019

Motivation

- Private booth voting was introduced as a measure to guarantee voting freedom.
- I However, modern technology helps breaching this privacy.
- Also, in a remote setting, there is no booth.
- Several coercion-mitigating remote voting schemes have been proposed in literature.
- This paper studies what are the explicit and implicit assumptions these schemes would need to satisfy in practice.

Schemes

We picked 7 remote voting protocols that have some coercion prevention measures:

- Stonian scheme
- ◎ NV-Civitas from the JCJ/Civitas family
- ◎ KTV-Helios from the Helios family
- Ø BeleniosRF
- Selene
- O Eos
- Selections

How to measure coercion resistance?

There are many approaches in literature. We selected the following properties:

- receipt-freeness,
- over-the-shoulder coercion resistance.

In addition, we studied whether the requirements proposed by Juels *et al.* are fulfilled:

- In resistance to forced abstention,
- resistance to casting an invalid vote,
- In resistance to simulation attack.

What about assumptions?

The anti-coercion properties may depend on several assumptions. We identified the following popular ones:

- o special client hardware,
- anonymous channels,
- PKI / key distribution,
- Isometric states and states and states and states are stated as a state of the state of the states are stated as a state of the states are stated as a state of the state of the states are stated as a state of the state of t
- ability to cast a re-vote,
- on non-trivial registration.

The Estonian scheme

6

- Re-voting is the only anti-coercion measure.
- Relies on special client hardware (national digital ID). \odot
- Relies on existing PKI.

Coercion properties:

Receipt-freeness	0			
Over-the-shoulder coercion resistance	•			
Resistance to forced abstention	0			
Resistance to casting an invalid vote	0			
Resistance to simulation attack	0			
\bullet = is assumed / holds \bigcirc = is not a	assumed / does not hold			
$\mathbf{O} = may hold \qquad \mathbf{O} = depend$	$\mathbf{D} = depends$ on the implementation			

NV-Civitas

Relies on:

- special client hardware (smart cards + reader with trusted display),
- o anonymous channels,
- PKI / key distribution,
- subliminal password/PIN hinting,
- the possibility to cast a re-vote,

7

I registration process that may be non-trivial.

Fulfills all of our chosen coercion properties:

receipt freeness, over-the-shoulder coercion resistance, resistance to: forced abstention / casting an invalid vote / simulation attack.

KTV-Helios

Relies on:

- o special client hardware,
- o anonymous channels,
- PKI / key distribution,
- ◎ the possibility to cast a re-vote.

Receipt-freeness	
Over-the-shoulder coercion resistance	
Resistance to forced abstention	
Resistance to casting an invalid vote	
Resistance to simulation attack	

BeleniosRF

Uses:

o re-randomisable ciphertexts and signatures.

Relies on:

◎ PKI / key distribution.

Receipt-freeness	۲
Over-the-shoulder coercion resistance	\bigcirc
Resistance to forced abstention	\bigcirc
Resistance to casting an invalid vote	•
Resistance to simulation attack	\bigcirc

Selene

Relies on:

- anonymous channels,
- PKI / key distribution,
- (possibility of revoting depends on implementation).

Receipt-freeness	lacksquare
Over-the-shoulder coercion resistance	\bullet
Resistance to forced abstention	•
Resistance to casting an invalid vote	•
Resistance to simulation attack	\bigcirc

Eos

Relies on:

- special client hardware,
- anonymous channels,
- PKI / key distribution,
- ◎ subliminal password/PIN hinting,
- Ithe possibility to cast a re-vote.

Receipt-freeness	
Over-the-shoulder coercion resistance	
Resistance to forced abstention	
Resistance to casting an invalid vote	•
Resistance to simulation attack	\bullet

Selections

Relies on:

- anonymous channels,
- subliminal password/PIN hinting,
- the possibility to cast a re-vote,
- \odot a non-trivial registration process.

Receipt-freeness	
Over-the-shoulder coercion resistance	
Resistance to forced abstention	
Resistance to casting an invalid vote	
Resistance to simulation attack	

The summary of results

Table 1. Cross-table of assumptions and achieved coercion resistance properties

	Estonia	AP-Qivitas	471. Helios	Belenioster	Selene	49 ⁸	Selections
Special client hardware	$igodot^1$	•	•	0	0	•	0
Anonymous channels	0	•	•	0	•	•	•
PKI / key distribution	•	\bullet^2	•	•	\bullet^2	\bullet^2	0
Subliminal password/PIN hinting	0	•	0	0	0	•	•
Casting a re-vote	•	•	•	0	0^3	•	•
Non-trivial registration	0	0^4	0	0	0	0	•
Receipt-freeness	0	•	•	•	0^{5}	•	0^{6}
Over-the-shoulder coercion resistance	•	•	\mathbb{O}^7	0	\mathbb{O}^8	•	•
Resistance to forced abstention	\mathbb{O}^9	•	\mathbb{O}^{10}	0	\mathbf{O}^{11}	•	\mathbb{O}^{12}
Resistance to casting an invalid vote	\mathbb{O}^9	•	\mathbb{O}^{13}	\mathbf{O}^{14}	\bigcirc^{15}	\mathbf{O}^{16}	0^{17}
Resistance to simulation attack	\mathbb{O}^{18}	•	\mathbb{O}^{19}	0	\bigcirc^{20}	0^{21}	\bullet^{22}
• = is assumed / holds \bigcirc = is not \bigcirc = depends on the implementation	ot assu	med / o	does not	hold	0 =	may h	old

October 4th, 2019

Conclusions

- \odot More assumptions \rightarrow higher coercion resistance.
- \odot More assumptions \rightarrow higher complexity.
- Some assumptions are more realistic:
 - PKI, ability to cast a re-vote.
- Others less so:

In anonymous channels, special client hardware, fake credentials.

- It is difficult to get detailed information about the protocols.
- Implementing proof-of-concept applications before publishing future schemes would be a big step forward.